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A B S T R A C T

The accurate detection of potato orientation and bud eye positions is critical for guiding the end-effector of 
intelligent cutting robots. This study introduced Potato Orientation Detection You Only Look Once (POD-YOLO), 
a novel lightweight model based on YOLOv8n, designed for fast and precise detection of potato orientation and 
bud eye locations. Key innovations include replacing the Cross Stage Partial Dark Network (CSPDarkNet) with 
the Cross Stage Partial and Dual Partial Network (CSPDPNet) to reduce parameter count and improve detection 
accuracy. Additionally, the "no more strided convolutions or pooling" approach replaced downsampling modules 
in the backbone and neck, enhancing detection of small targets and low-resolution images. The regression loss 
function was further optimized by substituting Kalman Filtering Intersection over Union (KFIoU) for improved 
rotated bounding box performance. Experimental results showed that POD-YOLO achieved a mean Average 
Precision (mAP) of 97.2%, with a precision of 95.2%, recall of 94.0%, and detection time of 9.01 ms. With only 
1.75 million parameters, POD-YOLO was lightweight and efficient, meeting real-time requirements. This 
research offers a robust and effective solution for automated potato orientation and bud eye detection, laying the 
groundwork for advanced agricultural automation.

1. Introduction

Potatoes are the fourth-most important food crop after corn, wheat, 
and rice (Johnson and Auat Cheein, 2023). As of 2022, according to 
statistics from the International Food and Agriculture Organization, the 
planting area of potatoes worldwide is approximately 1.7 × 107 ha, and 
the total output is approximately 3.75 × 108 tons. The potato planting 
area of Asian countries accounts for 43.9% of the world’s planting area 
(UN Food and Agriculture Organization, 2023). However, the cutting of 
potatoes before sowing is still mostly done by hand, which is charac
terized by problems such as a low degree of mechanization, high labor 
intensity, and high labor costs.

To address these challenges, countries such as China and the United 
States, as well as some European nations, have begun to develop intel
ligent and automated cutting equipment to handle the busy sowing 
season (Milestone, 2024; Peterson, 2024; Wang et al., 2020). The cutting 

principle of the intelligent potato-cutting robot is to first identify the eye 
positions and then calculate the cutting angle based on these positions 
(Yang et al., 2023). However, when calculating the cutting angle, 
considering only the bud eye positions does not allow for real-time 
tracking of the potato’s position and orientation, making it difficult to 
meet the cutting requirements. This study focuses primarily on the 
orientation of potatoes and the identification of bud eye positions, laying 
a solid foundation for the next step of calculating the cutting angle in 
potato-cutting robots.

The traditional image-based method for potato bud eye detection 
mainly relies on the information of color features (Wu et al., 2020), 
shape features (Bargoti and Underwood, 2017), and texture features 
(Sengupta and Lee, 2014) to complete the detection task. Based on the 
use of multispectral images, Yang et al. (2023) combined the supervised 
multi-threshold segmentation model and the Canny edge detector to 
obtain a segmentation mask and complete the detection of potato bud 
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eyes, and achieved an average detection accuracy of 89.2%. Li et al. 
(2018) proposed a potato bud eye recognition method based on 
three-dimensional (3D) geometric features of color saturation, and the 
bud eye recognition accuracy reached 91.4%. While these research 
methods can identify the position of the potato bud relatively accu
rately, their application scenarios are singular and their robustness is 
poor; thus, they cannot complete the detection task in complex 
environments.

In recent years, deep learning technology has been increasingly used 
in agriculture (Ariza-Sentís et al., 2024; Koirala et al., 2019). For 
instance, Paul et al. (2024) adopted various You Only Look Once (YOLO) 
algorithms for pepper detection, peduncle detection, and counting/
tracking detection. Their results showed that the YOLOv8s model ach
ieved the highest accuracy for the pepper detection task. Prasetyo et al. 
(2022) proposed the YOLOv4-tiny lightweight object detector for the 
detection of fish body parts, the accuracy of which is improved via the 
enhancement and balancing of feature diversity and the addition of 
extra branch detectors. By introducing DenseNet, SPP blocks, and an 
improved PANet to the YOLOv4 framework, Roy and Bhaduri (2022)
proposed Dense-YOLOv4, an improved real-time target detection 
framework based on the YOLOv4 algorithm, for the detection of 
mangoes in complex scenes. Cardellicchio et al. (2023) developed a 
method based on the YOLOv5 object detection algorithm to identify 
tomatoes, flowers, and nodes, either independently or collectively. 
Mirhaji et al. (2021) created image data of orange trees under different 
lighting conditions, applied YOLOv2, YOLOv3, and YOLOv4 to count 
and detect fruits in citrus orchards, and identified YOLOv4 as the best 
detection model. Zhou et al., (2024) proposed correlation filters with 
adaptive modality weights and cross-modality learning capabilities to 
perform multimodal tracking tasks. The method demonstrates excellent 
tracking performance across several benchmark datasets and is capable 
of overcoming challenges such as background clutter and partial oc
clusion. Zhou et al., 2023 proposed a blind image quality assessment 
(BIQA) method that uses self-attention and recurrent neural networks 
(RNNs). This method can simultaneously consider both local and global 
influences on image quality perception. Zhou et al., 2023 proposed a 
joint architecture with user perception and an efficient transformer 
dedicated to no-reference (NR) image quality assessment (IQA) for 
360-degree images. This method can learn both global and local features 
in 360-degree images and predict their quality score. Kaur et al. (2023)
proposed a deep ensemble learning model (DELM) for autonomous plant 
disease identification. Experimental results show that the model, which 
integrates VGG16, InceptionV3, and GoogleNet, achieves higher accu
racy. Samant et al. (2023) used deep learning techniques to predict 
whether potato leaves are diseased, comparing the prediction results of 
ANN and CNN algorithms. The results show that the CNN algorithm 
yields the best prediction performance. Trivedi et al., n.d. used a “deep 
convolutional neural network (DCNN)” based encoder-decoder archi
tecture for semantic segmentation of leaf lesions. This method shows 
significant improvements compared to present crop disease classifica
tion systems. In addition, a series of similar object detection studies 
based on deep learning has been carried out (Ganesan and Chinnappan, 
2022; Huang et al., 2023; Jiang et al., 2024; Magalhães et al., 2021; 
Marset et al., 2021; Onoufriou et al., 2023). Object detection algorithms 
based on deep learning can obtain the characteristic information of 
objects in complex environments to detect their positions.

However, most of the previously mentioned object detection 
methods use a horizontal frame to obtain the specific position of a 
certain object, but cannot detect the specific orientation of the object. In 
real applications, there exist many scenarios in which the angle infor
mation of objects must be obtained; these include text scenes (Liu et al., 
2018), retail scenes (Pan et al., 2020), 3D scenes (Wang et al., 2021), and 
aerial image detection (Yang et al., 2020; Yi et al., 2020). Zhao et al. 
(2022) constructed a directional wheat cob detection algorithm by using 
the CSL loss function for angle classification, adding the CIoU loss 
function to optimize the fixed loss, and improving the YOLOv5 model; 

the average accuracy of this method was found to be 90.5%. Song et al. 
(2022) generated a corn cob position bounding box based on the Ori
ented R-CNN model, and the correct rate of position estimation was 
found to be 88.56%. Zhou et al., (2024) proposed a comprehensive 
framework based on multi-object oriented detection specifically 
designed for the detection and analysis of rod-like crops. The proposed 
YOLO-OBB model predicts oriented bounding boxes, with a mAP@0.5 of 
90.3%.

The aforementioned research methods have achieved notable results 
in specific domains. However, challenges remain in accurately recog
nizing bud eyes and determining the orientation of potatoes for intelli
gent cutting robots, particularly in orientation determination. To 
address these issues, this study proposes a rotational object detection 
model, Potato Orientation Detection You Only Look Once (POD-YOLO), 
based on YOLOv8n, which enables fast and accurate recognition of po
tato orientation and bud eye positions. The model overcomes the limi
tations of existing methods in simultaneously detecting bud eye 
positions and potato orientation. The main contributions of this study 
are as follows. 

1) A novel lightweight model, POD-YOLO, was proposed to detect the 
potato orientation and bud eye position in different states.

2) For low-resolution and small objects, the method of “no more strided 
convolutions or pooling” was used to replace the downsampling 
module to improve the detection accuracy of the model.

3) The Kalman Filtering Intersection-over-Union (KFIoU) was intro
duced as the bounding box regression loss to improve the angle 
regression quality of the bounding box.

The rest of this paper was organized as follows. Section 2 described 
the structure of the intelligent cutting robot, introduced the data 
collection and processing methods, and presented the POD-YOLO al
gorithm developed in this study. Section 3 detailed the hardware 
configuration of the experiment, the network training parameters, and 
provided a comprehensive presentation of the experimental results. In 
Section 4, the proposed methods were discussed, and finally, the article 
was concluded in Section 5.

2. Materials and methods

This section described the structural composition and operating 
principles of the intelligent cutting robot, followed by an introduction to 
potatoes and bud eye collection methods, data processing procedures, 
and the basic architecture of YOLOv8. Finally, it detailed the network 
structure and design principles of POD-YOLO.

2.1. Hardware system

A custom intelligent potato-cutting robot based on a Delta robot was 
utilized in this study to detect the orientation and bud eye position of 
potatoes. Fig. 1(a) shows the front view of the 3D model of the potato- 
cutting robot. The cutting robot consists of three main components: 
the visual detection module (Region A), the cutting action execution 
module (Region B), and the conveyor module (Region C).

During operation, as shown in the isometric view in Fig. 1(b), both 
the top and bottom cameras of the visual detection module simulta
neously capture information about the positions of the buds and the 
orientation of the potatoes. The conveyor transports the potatoes to the 
cutting area, and the Delta robot performs the cutting actions.

In the cutting process, the positions of the buds and the orientation of 
the potatoes are identified by the cameras, and the cutting angle is 
calculated. The calculation results are sent to the Delta robot controller, 
which adjusts the cutting tool to the specified angle. The Delta robot 
then executes the cutting action, completing the intelligent cutting of the 
potatoes. Fig. 2 shows a physical image of the potato-cutting robot, 
which is used to collect data on the potatoes and their bud eye positions.
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The primary focus of this research lies in the acquisition of the 
orientation and bud eye position of potatoes, thus laying the ground
work for subsequent studies on decision-making algorithms for potato- 
cutting.

2.2. Sample and image collection

In the experiment, a WH-L2140.K214L camera with a resolution of 
1920 × 1080 pixels and a capture rate of 60 frames per second (FPS) was 
used. The Zhongshu No. 2 potato variety was used, and 300 potatoes 
with eyes were selected for the study. During image acquisition, to 
obtain information from different angles, each potato was placed on the 
experimental platform in the order of 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 
270◦, and 315◦ for data collection, as shown in Fig. 3. The potatoes were 
photographed under natural lighting conditions. For each potato, 
simultaneous captures were taken by the top and bottom cameras on the 

experimental platform, thus acquiring two images containing the angle 
information and eye position. Sixteen images were obtained for each 
potato. This process was repeated in sequence, resulting in a total of 
4800 potato images, each capturing different positional information.

2.3. Data processing

After acquiring 4800 raw images, the images were annotated using 
the “labelme” tool, and the annotations were saved in JSON format with 
polygon shapes. The annotations identified two categories, namely po
tatoes and buds, which were respectively labeled as “potato” and “bud”. 
Given the relatively fixed detection environment, no additional data 
augmentation was necessary to enhance the generalization ability of the 
model. Therefore, the labeled potato images were randomly divided into 
training (3840 images), and test (960 images) sets at the ratio of 8:2 for 
utilization in subsequent model training and testing tasks.

During manual annotation, the precise location of the four corners of 
a rotated rectangle is challenging. As a result, a cross-marking method 
was employed to enhance the annotation efficiency. The specific tech
nique is illustrated in Fig. 4. Firstly, one potato orientation was selected 
to serve as the reference line for the first diagonal. Then, the two points 
that were the closest to the background of the target object on both sides 
of this baseline were selected, as indicated by Point3 and Point4 in Fig. 4
(a), forming a closed cross. Subsequently, based on the principle of the 
perpendicular distance from a point to a line, convert the cross label into 
a rotated rectangular box as shown in Fig. 4(b). For reference, please see 
the code at: https://github.com/DDGRCF/YOLOX_OBB.

2.4. YOLOv8 structure

YOLOv8 is a representative algorithm in single-stage object detec
tion, and has achieved good results on public datasets, such as the 
ImangeNet-1K, COCO, and DOTAv1 life scene and aerial photography 
datasets (Jocher et al., 2023). Compared to other object detection al
gorithms, such as YOLOv3 (Redmon and Farhadi, 2018), YOLOv5 
(Jocher, 2020), and YOLOv9 (Wang et al., 2024), YOLOv8 features a 
wide range of application scenarios, a strong open-source foundation, 
and frequent maintenance, and can be applied to tasks such as object 
classification, object detection, instance segmentation, keypoint detec
tion, object tracking, and rotated object detection.

In terms of the network architecture, YOLOv8 retains its original 
structural characteristics and mainly consists of three components: the 
backbone for feature extraction, the neck for enhancing feature infor
mation, and the detection head for obtaining object categories and 

Fig. 1. 3D Model of the potato-cutting robot.

Fig. 2. physical image of the potato-cutting robot.
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bounding boxes.
In the detection head portion, the design principle of YOLOv8 is 

altered as compared to its predecessors via the use of a decoupled head 
to separately calculate the losses for bounding boxes and categories. It 
separately extracts target location and category information, and learns 
the loss values of the model through different network branches before 
finally merging the information. The structure of this approach is indi
cated as “Decoupled” in Fig. 8. This design effectively reduces the 
parameter count and computational complexity of the model, thus 
enhancing its generalizability and robustness. Furthermore, YOLOv8 
adopts an anchor-free philosophy, and directly learns the shapes of 
various bounding boxes. During inference, it does not rely on clustering, 
but instead fits the object size based on learned bounding box distances 
or keypoint positions. This method allows the network to better express 
object shapes and generalize without depending on prior knowledge of 
the data; thus, it particularly demonstrates significant improvement for 
moving objects, objects of inconsistent sizes, and targets of anomalous 
scales.

Additionally, YOLOv8 has been used to construct a variety of 
detection models for different application scenarios, namely YOLOv8n, 
YOLOv8s, YOLOv8m, and YOLOv8l, where n, s, m, and l represent the 
number of parameters of the model; n indicates the least number of 

parameters, s indicates the second-least number of parameters, m in
dicates a medium number of parameters, and l indicates the most 
computationally intensive model.

According to the preceding discussion, YOLOv8 features rich appli
cation scenarios, a simple structure, enhanced capability in representing 
irregular objects, and a wide range of model selectivity. YOLOv8n, 
which has a smaller number of parameters, was selected as the baseline 
model in this study, based on which the POD-YOLO detection model was 
designed to achieve the rapid, accurate, and lightweight acquisition of 
the orientation and bud eye positions of potatoes.

2.5. POD-YOLO

This section presented the detailed structure of the proposed POD- 
YOLO model. The model included a lightweight backbone network for 
efficient computation. It incorporated the Cross Stage Partial and Dual 
Partial Network (CSPDPNet) for robust feature extraction. Moreover, the 
Space-to-Depth Convolution (SPD-Conv) module was integrated to 
enhance the detection accuracy of small targets. Specific modifications 
to the YOLOv8n model were also described to further optimize perfor
mance. Additionally, it discussed the optimization of the Probabilistic 
Intersection-over-Union (ProbIoU) loss function to the KFIoU loss 

Fig. 3. Potato placement style. The red circle mark in the picture is the bud eye of the potatoes. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.)

Fig. 4. Cross-marking label for rotating rectangle.

J. Huang et al.                                                                                                                                                                                                                                   Engineering Applications of Artiϧcial Intelligence 142 (2025) 109923 

4 



function.

2.5.1. Cross Stage Partial and Dual Partial Network (CSPDPNet) structure
The Cross Stage Partial Dark Network (CSPDarkNet) in YOLOv8 

consists of two ConvModules and n DarknetBottleneck modules, as 
shown in Fig. 5(a). In the Figure, the DarknetBottleneck module consists 
of two ConvModules, which are standard convolution modules with a 
large amount of calculation. The total number of Floating point Oper
ations (FLOPs) executed in a standard convolution layer FLSC is defined 
as 

FLSC =W × H × C2 × K2, (1) 

where W × H is the size of the output feature map, C is the number of 
channels of the input and output feature maps, and K is the convolution 
kernel size.

Therefore, a lightweight convolution module, referred to as the 
CSPDPNet module, is proposed to replace the ConvModule in Darknet
Bottleneck. Its structure is shown in Fig. 5(b).

The CSPDPNet module is composed of the Partial Convolution 
(PConv) module from the FasterNet lightweight Convolutional Neural 
Network (CNN) (as shown in Fig. 6(b)) and the Dual Convolution 
(DualConv) design concept of lightweight CNN (Chen et al., 2023; 
Zhong et al., 2023). Its structure, as shown in Fig. 5(b), maintains the 
original structure of CSPDarkNet, but the DarknetBottleneck is changed 
to the PConv module. Moreover, drawing on the design idea of Dual
Conv, the two PConv modules are connected in series, which is repeated 
n times.

Without a loss of generality, assuming that the input and output have 
the same number of channels, then the FLOPs number of the PConv 
module is defined as 

FLPC =H × W × K2 × Cp2, (2) 

where Cp is the number of input and output channels of the PConv 
module. By comparing the standard and PConv convolution modules, 
the following can be concluded: 

RPC/SC =
FLPC

FLSC
=

C2

Cp2 . (3) 

If Cp takes the value of 1/4 of C for the convolution operation, then the 
FLOPs number of the standard convolution is 16 times that of the PConv 
convolution.

This design reduces the number of parameters of the model, and, on 
the other hand, it can enhance the learning ability and generalization 
performance of the model via dual paths, thereby improving the deep 
learning efficiency and accuracy of the network while retaining spatial 
information.

2.5.2. SPD-conv module
Most of the data collected on mobile devices are low-resolution im

ages of 640 × 640 pixels. However, the bud eye is a small target object, 
and a too-low resolution will affect the expressive power of the image. In 
YOLOv8, strided convolution or pooling layers are used to downsample 
feature maps, which results in the serious loss of fine-grained informa
tion and weaker feature information.

For this reason, the downsampling modules of the backbone and 
neck in YOLOv8n are replaced. The Space-to-Depth and non-strided 
Convolution (SPD-Conv) modules were introduced and the method of 
"no more strided convolutions or pooling" was adopted to replace the 
downsampling module, aiming to better extract small objects and cap
ture semantic information from low-resolution images (Sunkara and 
Luo, 2022). Fig. 7 shows the structure of SPD-Conv.

From the figure, it can be observed that for the input feature map X, a 
submap fx,y is composed of all elements X(i, j), where both i + x and j + y 
are divisible by scale. Consequently, each submap can undergo down
sampling by the factor scale. Fig. 7(a), (b), and 7(c) illustrate this process 
when scale = 2, resulting in four submaps f0,0, f1,0, f0,1, f1,1, each with 

dimensions 
(

S
2,

S
2,C1

)

, as depicted in Fig. 7(b). The downsampled sub- 

feature maps are then concatenated along the channel dimension, 
yielding a feature map X′ with spatial dimensions reduced by a factor of 
scale and channel dimensions increased by scale2. In essence, the Space- 
to-Depth (SPD) operation transforms the feature map X(S, S,C1) into an 

intermediate feature map Xʹ
(

S
scale,

S
scale,scale2C1

)

, as depicted in Fig. 7(c).

Subsequent to the SPD-Conv feature transformation layer, a non- 
strided convolutional layer with C2 filters, where C2 < scale2C1, 

further maps Xʹ
(

S
scale,

S
scale, scale2C1

)

to Xʹ́
(

S
scale,

S
scale,C2

)

, as depicted in 

Fig. 7(d).
In standard downsampling with a stride greater than 1, there is a risk 

of discriminative information loss. Although it seemingly also projects 

the feature map X(S, S, C1)→Xʹ́
(

S
scale,

S
scale, C2

)

, no such intermediate 

representation X′ is involved in that process.
In summary, the downsampling module constructed via SPD-Conv 

Fig. 5. CSPDarkNet and CSPDPNet module structures.

Fig. 6. ConvModules and PConv Module structure.
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effectively performs dimensionality reduction without losing learnable 
information, thereby serving as a substitute for traditional strided con
volutions and pooling operations commonly adopted in existing network 
architectures. This novel approach demonstrates improved feature 
extraction performance for low-resolution images and small target 
objects.

2.5.3. Improved POD-YOLO model
The improved POD-YOLO model mainly exhibits changes in the 

CSPDarkNet module and downsampling ConvModule in the backbone 
network. Additionally, a small target detection head is added. Specif
ically, CSPDarkNet is changed to the CSPDPNet module, and Con
vModule is changed to the SPD-Conv module, as shown in Fig. 8. When 
the model performs forward reasoning, it first downsamples and ex
pands the channel number of the image with a size of 640 × 640 × 3, and 

then uses four sets of stage layers composed of SPD-Conv and CSPDPNet 
to complete the downsampling of the image. Second, the Spatial Pyra
mid Pooling-Fast (SPPF) layer is used to further obtain richer semantic 
information. The feature information in Stage1, Stage2, Stage3, and 
Stage4 is then extracted and connected to the neck network of YOLOv8, 
and a Feature Pyramid Network (FPN) module is constructed to extract 
feature information about different receptive fields. The SPD-Conv and 
CSPDPNet modules are then used again to obtain small target objects 
and reduce the amount of model calculation. Finally, the neck is divided 
into four feature layers of different scales to respectively complete the 
detection tasks for large, medium, small, and extra small objects.

2.5.4. Angle regression loss function
In rotated object detection, the perspective of the object is often from 

above, vertically overlooking the state. The shape and position of objects 

Fig. 7. SPD-Conv downsampling module structure.

Fig. 8. Improved rotated object detection model.
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often contain different angle information. At this time, the use of 
traditional horizontal detection frames cannot meet the detection needs. 
In January 2024, YOLOv8 OBB (Jocher et al., 2023) included the 
addition of an angle regression loss function on the basis of horizontal 
object detection to achieve rotated object detection. The angle regres
sion loss function is the Probabilistic Intersection-over-Union (ProbIoU), 
the calculation formula of which is as follows (Murrugarra-Llerena et al., 
2021): 

L 1(p, q)=HD(p, q) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − Bc(p, q)

√
, (4) 

where BC = e− BD , considering that p ∼ N (μ1,Σ1) and q ∼ N (μ2,Σ2) are 
Gaussian distributions with 

μ1 =

(
x1
y1

)

,Σ1 =

[
a1 c1
c1 b1

]

, μ2 =

(
x2
y2

)

,Σ2 =

[
a2 c2
c2 b2

]

, (5) 

we can obtain a closed-form expression for BD given by 

BD =
1
8
(μ1 − μ2)

TΣ− 1(μ1 − μ2) +
1
2

ln
(

det Σ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
det Σ1 det Σ2

√

)

, (6) 

where, Σ = 1
2 (Σ1 + Σ2), Σ = RΛR⊤ and μ = (x, y)⊤.

Here, R denotes the rotation matrix and Λ denotes the diagonal 
matrix of eigenvalues. For a 2D object B 2d(x,y,w,h,θ), 

R2d =

(
cos θ − sin θ
sin θ cos θ

)

,Λ2d =

⎛

⎜
⎜
⎜
⎝

w2

4
0

0
h2

4

⎞

⎟
⎟
⎟
⎠
. (7) 

ProbIoU uses a Gaussian distribution to fuzzily represent the target 
area, which is equivalent to using an ellipse to represent the bounding 
box. It is scale-invariant and will not cause the loss value to change as 
the scale changes. Furthermore, it no longer requires the definition of 
the bounding boxes; however, for a square target frame, there is no way 
to provide more accurate angle information.

Therefore, in this study, the Kalman Filtering Intersection-over- 
Union (KFIoU) loss function (Yang et al., 2023) is used to replace the 
ProbIoU loss function. While KFIoU also uses the Gaussian distribution 
principle, the Kalman filter principle is used to calculate the Gaussian 
distribution probability, and the center point loss function is introduced 
to calculate the center distance between the two bounding boxes to 
improve the training accuracy of the model.

The specific implementation process is shown in Fig. 9. The two 
rotated rectangular boxes are first converted into Gaussian probability 
distribution regions. The center point loss is then introduced, and the 
center position of the two Gaussian distributions is calculated. This is 

followed by the calculation of the intersection region of the two 
Gaussian distributions, and the size of the angular regression loss 
function is then evaluated. Finally, the three Gaussian distributions are 
inverted into a rotated rectangular box, and the approximate SkewIoU is 
calculated.

When using KFIoU to calculate the rotated bounding box loss func
tion, the area of the corresponding rotation box is first calculated based 
on the covariance (Yang et al., 2023): 

V B (Σ)=2n
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∏

eig(Σ)
√

= 2n ⋅
⃒
⃒
⃒
⃒Σ

1
2

⃒
⃒
⃒
⃒=2n⋅|Σ|

1
2, (8) 

where n denotes the dimension information, here n = 2.
The key to the calculation of SkewIoU is to obtain the area of the 

intersection area. If the intersection area is also approximated as a 
Gaussian distribution, its area can be calculated by Eq. (8). Moreover, 
the intersection areas N x(μ1,Σ1) and N x(μ2,Σ2) of the two Gaussian 
distributions can be obtained by the product of the current two Gaussian 
distributions, as follows (Liao et al., 2023; Tian et al., 2019): 

αN x(μ,Σ)=N x(μ1,Σ1)N x(μ2,Σ2), (9) 

where α = N μ1 (μ2,Σ1 + Σ2), μ = μ1 + K(μ2 − μ1), and Σ = Σ1 − KΣ1, 
among which K is the Kalman gain K = Σ1(Σ1 + Σ2)

− 1.
Because the intersected Gaussian distribution is not a standard 

Gaussian distribution, there is a coefficient in front of it, and this coef
ficient is related to the center distance between the two boxes. There
fore, center point loss is introduced to make the two Gaussian 
distributions concentric. Consequently, the coefficient is approximately 
constant, and there is no need to consider calculations.

The resulting KFIoU loss function can be derived from the following 
equation: 

KFIoU=
V B 3 (Σ)

V B 1 (Σ1) + V B 2 (Σ2) − V B 3 (Σ)
, (10) 

where V B 1 (Σ1) denotes the Gaussian area of the ground truth bound
ing box, V B 2 (Σ2) denotes the Gaussian area of the predicted bounding 
box, and V B 3 (Σ) signifies the area of intersection between V B 1 (Σ1)

and V B 2 (Σ2), as shown in Fig. 8(d). In n dimensions, 
0 ≤ KFIoU ≤ 1

2
n
2+1

− 1
, and when n is equal to 2, 0 ≤ KFIoU ≤ 1

3.

The Smooth L1 loss is employed for the center point loss function, 
which is defined as follows (Girshick, 2015): 

Smooth L1(x)=
{

0.5x2 if|x| < 1
|x| − 0.5 otherwise , (11) 

where x = f(xi) − yi represents the difference between the true and 

Fig. 9. KFIoU function calculation process.

J. Huang et al.                                                                                                                                                                                                                                   Engineering Applications of Artiϧcial Intelligence 142 (2025) 109923 

7 



predicted values.
The regression loss function is set by 

Lr e g = L1 + Lk f , (12) 

where Lk f (Σ1,Σ2) = e1− KFIoU − 1.

3. Results

This section begined with a detailed description of the computational 
hardware configuration and training parameters of the POD-YOLO 
model. It then introduced the various improvement modules, followed 
by an ablation study and an analysis of the experimental results before 
and after the model’s enhancements. Finally, it provided a comparative 
analysis of various rotated object detection algorithms.

3.1. Experimental setup

The computing resources used in this study were obtained from the 
online server (AutoDL) of the Chinese Academy of Sciences AutoDL 
Technology Co., Ltd. The processor CPU model was an AMD EPYC7642 
48-core processor. The running memory capacity was 80 GB, the solid- 
state drive (SDD) capacity was 50 GB, and the number of cores was 24. 
The graphics card (GPU) model was an NVIDIA GeForce RTX4090, the 
video memory was 24 GB, and the system environment was Ubuntu 
20.04. The Python 3.8 programming language was used, as was the 
PyTorch 1.13 deep learning framework, and the parallel computing 
operator of CUDA 11.3 was adopted.

The network model parameter settings were as follows. The stand- 
alone, single-card mode was used, and the official YOLOv8n-obb pre- 
training model was adopted. The input size of 640 × 640 × 3 was used, 
the number of samples in each batch of images was 16, the number of 
workers was 8, the training optimizer was adaptive moment estimation 
(Adam), the number of training epochs was 300, and the learning rate 
was decreased using cosine annealing (cos). To prevent the model from 
overfitting, the weight decay was set to 0, the initial learning rate was 
0.001, the weight decay coefficient was 0.0005, the momentum factor 
was 0.937, and the mosaic and mixup data enhancement factors were set 
to 1.0 and 0.5, respectively.

3.2. Experimental results of the improved model

This section presented the experimental results of different improved 
modules in the POD-YOLO model, including results from various light
weight model modules, different downsampling modules, and different 
angle regression loss functions.

3.2.1. Experimental results of different lightweight feature extraction 
modules

In this study, an improved YOLOv8n rotated object detection model, 
POD-YOLO, was constructed. In the proposed model, the backbone 
network CSPDarkNet was replaced with CSPDPNet, which integrated 
the concepts of PConv and DualConv. The downsampling module Con
vModule was also changed to the SPD-Conv module. Additionally, a 
detection head was introduced from stage1 of the backbone network.

This experiment was based on the POD-YOLO model, for which 
different lightweight backbone networks, such as MobileNetV2, Mobi
leNetV3, GhostNetV2, ShuffleNetV2, and FasterBlock, were used to 
replace the feature extraction module in the backbone network. The 
experimental results were analyzed and compared to investigate the 
feature extraction performance of the improved rotated object detection 
model. The training parameters were used to train the altered network 
models one by one according to the experimental setup described in 
Section 3.1.

The experimental results for the YOLOv8n rotated object detection 
model with four detection heads, along with each of the improved 

rotated object detection models, are presented in Table 1. When the 
CSPDPNet module was used as the backbone feature extraction network 
of YOLOv8n, the number of parameters was 2.50 million, the FLOPs 
number was 11.60 G, the mean average precision (mAP) was 96.50%, 
the precision (P) was 93.30%, the recall (R) was 93.70 %, and the 
network forward inference time was 9.01 ms.

Compared with the backbone CSPDarkNet module, the number of 
parameters was reduced by 20.8% and the FLOPs number was reduced 
by 11.2%, while the model detection accuracy and forward inference 
speed remained basically the same.

Compared with other lightweight feature extraction networks, 
namely MobileNetV2, MobileNetV3, GhostNetV2, and ShuffleNetV2, 
the mAP value of the CSPDPNet module was respectively increased by 
0.20%, 0.10%, 0.70%, and 0.40%. And the forward reasoning time was 
respectively reduced by 6.54, 5.73, 13.45, and 3.90 ms. Compared with 
FasterBlock, the forward reasoning time and detection accuracy were 
basically the same.

The experimental results show that when CSPDPNet was used as the 
feature extraction network of YOLOv8n, the model demonstrated sig
nificant advantages in the number of model parameters and the FLOPs 
number. The detection accuracy and detection time were on the same 
level as when CSPDarkNet was used as the feature extraction network, 
and, compared with other lightweight backbone networks, CSPDPNet 
contributed to a faster forward inference speed and higher detection 
accuracy.

3.2.2. Experimental results of different downsampling modules
The downsampling module in the YOLOv8n rotated object detection 

model uses a standard convolution to change the convolution step size to 
achieve downsampling, which may result in the loss of feature infor
mation during the downsampling process. In this experiment, the 
detection performance of various downsampling modules, such as HWD, 
CGNet, ADown, and SPD-Conv, was tested on low-resolution images and 
small target objects.

The results exhibited in Table 2 reveal that when using the SPD-Conv 
module as the downsampling operator for the YOLOv8n model, the mAP 
value was 96.80%, the precision was 93.80%, the recall was 94.50%, 
APbud was 94.20%, and APpotato was 99.50%. Compared to the standard 
convolutional downsampling module, the mAP value of the model was 
0.1% higher and the bud eye prediction accuracy was 0.3% higher. 
Compared with the HWD, CGNet, and ADown modules, the mAP value 
was respectively improved by 0.7%, 1.3%, and 0.4%, APbud was 
respectively improved by 0.7%, 2.7%, and 0.8%, and APpotato was 
basically the same. It is evident that the use of the SPD-Conv module to 
detect the orientation and bud eye position of potatoes displays a greater 
advantage. This is partly because the resolution of the input image itself 
is low. Furthermore, the bud eyes are small target objects, and the 
feature information of the target can be obtained at a finer granularity 
by using the SPD-Conv module. Fig. 10 presents the heat map visuali
zation of the 15th layer of the POD-YOLO model. From the figure, it can 
be determined that the model was more focused on the bud eye position 
after the addition of the SPD-Conv module. Fig. 11 displays the results of 
different downsampling modules for the detection of the potato orien
tation and bud eye position. The use of SPD-Conv as the downsampling 

Table 1 
Experimental results of different lightweight feature extraction modules.

Module mAP 
(%)

P (%) R (%) Latency 
(ms)

Params 
(M)

FLOPs 
(G)

CSPDarkNet 96.90 95.50 91.80 9.84 3.02 12.90
MobileNetV2 96.30 93.20 93.40 15.55 3.76 14.80
MobileNetV3 96.40 93.70 93.30 14.74 5.66 14.20
GhostNetV2 95.80 94.10 91.10 22.46 6.34 13.40
ShuffleNetV2 96.10 92.40 93.50 12.91 2.80 12.20
FasterBlock 96.30 94.00 93.40 10.32 2.65 11.90
CSPDPNet 96.50 93.30 93.70 9.01 2.50 11.60
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module resulted in the detection of more information about the bud 
eyes, especially those at the edge position, such as the position marked 
by the red arrow in the figure graphic.

3.2.3. Experimental results of different angular regression loss functions
For an object whose shape is close to a square, the existing angular 

regression loss function cannot adequately fit the shape of the object. 
Thus, in this experiment, a variety of different angular regression loss 
functions were used to test and analyze the prediction accuracy and 
angular bounding box regression of the proposed POD-YOLO rotated 
object detection model.

The experimental results listed in Table 3 reveal that when using the 
KFIoU angular regression loss function, the highest values of 97.2% and 
79.7% were respectively achieved for mAP0.5 and mAP0.75, thus dis
playing respective improvements of 0.4% and 2.6% as compared to 
ProbIoU.

Compared to the other loss functions, namely GWD and KLD, mAP0.5 
exhibited respective improvements of 4.3% and 5.3%. Fig. 12 shows the 
results of using different angular regression loss functions to predict the 
potato orientation and bud eye position. The KFIoU angular regression 
loss function was found to have a better regression effect when used to 
predict bud eyes at the edge position.

It is evident that using the KFIoU angular loss function achieved 
some advantages in terms of the detection accuracy and prediction ef
fect. Thus, KFIoU was chosen as the angular regression loss function for 
POD-YOLO.

After analysis, the possible reason for this result is that KFIoU uses 

the centroid distance loss function, which combines the advantages of 
the distance loss function and the Gaussian probability distribution. This 
makes it easier for the model to learn the difference between the 
bounding box loss functions, and ultimately improves the overall pre
diction accuracy of the model.

3.3. Experimental results before and after improvement

The original YOLOv8n framework employs CSPDarkNet as its 
backbone, standard convolution modules for downsampling, and Pro
bIoU as the angle regression loss function. In the improved POD-YOLO, 
CSPDPNet was used as the backbone, reducing model parameters while 
maintaining high detection accuracy, as detailed in Table 1. The stan
dard convolution modules in the downsampling process were replaced 
with SPD-Conv, improving the detection of small targets, such as potato 
buds, and enhancing performance on low-resolution images. KFIoU 
replaced ProbIoU as the angle regression loss function, improving 
bounding box quality and overall detection precision.

The visual comparison between YOLOv8n and POD-YOLO for potato 
bud detection and potatoes orientation were illustrated in Figs. 13 and 
14. YOLOv8n showed frequent missed detections of potato buds, 
whereas POD-YOLO accurately detected most bud eye locations. For 
orientation detection, YOLOv8n struggled with angle regression (e.g., 
Fig. 12(d)), while POD-YOLO better aligned bounding boxes and pro
vided more precise angle predictions.

In Table 4, POD-YOLO achieved a significant reduction in model 
parameters, approximately halving those of YOLOv8n. Despite the 

Table 2 
Experimental results of different downsampling modules.

Model mAP (%) P (%) R (%) APbud APpotato

ConvModule 96.70 93.80 95.00 93.90 99.40
HWD 96.10 94.00 93.60 93.50 99.50
CGNet 95.50 92.70 91.80 91.50 99.50
ADwon 96.40 92.70 99.90 93.40 99.50
SPD-Conv 96.80 93.80 94.50 94.20 99.50

Fig. 10. Heatmap visualization results of different downsampling modules.

Fig. 11. The results of detecting potato orientation and bud eye using different downsampling.

Table 3 
Comparison of regression loss function results from different angles.

Loss Function mAP0.5 (%) mAP0.75 (%) P (%) R (%)

ProbIoU 96.80 76.80 94.90 93.40
GWD 92.90 72.40 87.70 90.90
KLD 91.90 71.40 87.30 87.90
KFIoU 97.20 79.40 95.20 94.00
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reduced complexity, POD-YOLO increased potato bud detection accu
racy by 1.1% and improved the overall mAP by 0.4%, demonstrating 
superior performance in both efficiency and detection quality.

3.4. Ablation experiment

In this experiment, based on the YOLOv8n rotated object detection 
model, the improved modules were added one by one to test the overall 
performance of the model in different states. The evaluation focused on 
the mAP value, the latency, and the number of model parameters.

Table 5 reveals that when no module was added, the mAP value of 
YOLOv8n was 96.8%, the forward reasoning time was 8.1 ms, and the 
number of model parameters was 3.08 million. After adding the 

CSPDPNet module, the number of parameters of the improved YOLOv8n 
model decreased significantly to 31.4% of the original number of pa
rameters, but the model detection accuracy also decreased to 96.70%. 
On this basis, the SPD-Conv module was added; this module is specially 
designed for small target objects and low-resolution images. The mAP 
value of the model was increased to 96.80%, and the number of pa
rameters also decreased slightly. Finally, after changing the original 
ProbIoU regression loss function to KFIoU, the mAP value of the model 
increased again by 0.4%, the other parameters were unchanged.

These results demonstrate that the proposed POD-YOLO rotated 
object detection model using CSPDPNet, SPD-Conv, and KFIoU has 

Fig. 12. Results of detecting potato orientation and bud eye position using different angle regression loss.

Fig. 13. YOLOv8n visualization detection results.

Fig. 14. POD-YOLO visualization detection results.

Table 4 
Test results of the model before and after improvement.

Model mAP 
(%)

APbud 

(%)
APpotato 

(%)
Params 
(M)

Latency 
(ms)

YOLOv8n 96.80 93.90 99.40 3.08 8.10
POD- 

YOLO
97.20 95.00 99.40 1.75 9.01

Table 5 
POD-YOLO model ablation experimental results.

Model mAP 
(%)

Latency 
(ms)

Params 
(M)

YOLOv8n 96.80 8.10 3.08
YOLOv8n + CSPDP + Conv + ProbIoU 96.70 10.12 2.11
YOLOv8n + CSPDP + SPD-Conv +

ProbIoU
96.80 10.04 1.75

YOLOv8n + CSPDP + SPD-Conv +
KFIoU

97.20 9.01 1.75
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strong prediction ability, which provides a basis for the study of edge 
devices and embedded devices.

3.5. Experimental results of different rotated object detection algorithms

In this experiment, the potato test set was used as the image data for 
the evaluation of the overall performance of the models. The training 
parameters were set according to those described in Section 2.1, the pre- 
trained models were set according to the files provided in MMRotate 
(MMRotate Contributors, 2022), and the training data were the same for 
each model. To validate the model performance, the test set data were 
subjected to forward inference using the FasteRCNN, RetinaNet, 
S2A-Net, R3Det, RoI Transformer, and POD-YOLO rotated object detec
tion models. The number of parameters of each detection model, the 
forward inference time, the overall detection accuracy of the model 
(mAP value), and the bud and potato AP values were investigated.

From the results reported in Table 6, it can be seen that the improved 
YOLOv8n rotated detection model (POD-YOLO) achieved an overall 
mAP value of 97.2%, thus exhibiting respective improvements of 39.3%, 
35.2%, and 47.4%, 47.4%, and 47.4% as compared to FasterCNN, RoI 
Transformer, RetinaNet, S2A-Net, and R3Det. In terms of the number of 
model parameters, the improved rotating frame detection model ach
ieved a significant advantage over the other five rotated object detection 
models, and had only 1.75 million parameters. In terms of the detection 
time, the forward inference speed of POD-YOLO was 9.01 ms, a signif
icant advantage over the other models.

In addition, to more clearly observe the detection results, the five 
aforementioned rotated object detection algorithms were selected as the 
research objects, and five images predicted by each algorithm were 
randomly selected for analysis. The visualization results are shown in 
Fig. 15. The POD-YOLO model correctly detected all the potato and bud 
eye information in the pictures, and the regression bounding box accu
rately fit the potato orientation. When using the FasterCNN, RetinaNet, 
S2A-Net, R3Det, and RoI Transformer algorithms to detect the potato 
orientation and bud eye locations, most of the bounding boxes could not 
accurately fit the potato orientation, with the exception of RetinaNet. 
When detecting the potato bud eye position information, only Fas
terCNN and RoI Transformer could detect a portion of the bud eye po
sitions, while the other three models performed poorly, and relatively 
serious leakage occurred.

In summary, the results of the evaluation indicators show that POD- 
YOLO has strong detection ability, and can adapt to the different angles 
and positions of the potato in the image. Simultaneously, it can meet the 
needs of real-time detection.

4. Discussion

This paper proposes a method for potatoes orientation and bud eye 
detection, filling the technical gap in existing methods that fail to 
simultaneously detect both bud eye positions and potatoes orientation. 
The proposed POD-YOLO model improves detection accuracy in three 
key aspects: the design of a lightweight backbone network, modification 
of the downsampling module, and the introduction of a bounding box 
loss function.

First, the CSPDPNet module was designed to reduce the number of 
parameters in the backbone network while capturing rich feature in
formation. The CSPDPNet module was a modification of the CSPDarkNet 
module, where the Darknet Bottleneck module in CSPDarkNet was 
replaced by two PConv modules. This design was inspired by the PConv 
concept used in DualConv and FasterNet. Compared to MobileNetV2, 
MobileNetV3, GhostNetV2, and ShuffleNetV2, the CSPDPNet model 
showed an improvement in mAP (mean average precision) and a sig
nificant reduction in the number of parameters. The SPD-Conv down
sampling module effectively captured low-resolution and small target 
object information, which was particularly beneficial for detecting bud 
eyes, a small target. Using SPD-Conv to extract bud eye features enables 
more accurate and efficient capture of these features. The rotated 
bounding box regression loss function KFIoU leveraged the Kalman filter 
method to obtain the distribution probability of bounding boxes, 
calculated the overlap between the ground truth and predicted boxes, 
and updated the model’s training accuracy.

The potatoes orientation and bud eye detection model constructed 
using this approach can accurately and rapidly detect the positions of 
bud eyes and the orientation of potatoes. This provides technical support 
for automated potato-cutting robots and offers solutions for advancing 
agricultural automation.

The cutting principle of the intelligent potato-cutting robot is to first 
identify the eye positions and then calculate the cutting angle based on 
the eye positions (Yang et al., 2023). However, when calculating the 
cutting angle, considering only the bud eye positions does not allow for 
real-time tracking of the potato’s orientation and position, making it 
difficult to meet the cutting requirements. Therefore, both the orienta
tion of the potatoes and the bud eye positions must be considered to 
accurately calculate the cutting angle. This study primarily focuses on 
the orientation of potatoes and the positions of bud eye, laying a solid 
foundation for the next step of calculating the cutting angle in the 
potato-cutting robot.

Currently, object detection algorithms based on CNNs are widely 
applied in agriculture, and achieve real-time and accurate detection in 
complex environments. They have gained widespread recognition, such 
as in the detection of kiwifruit (Suo et al., 2021), passion fruit (Tu et al., 
2020), green peppers (Li et al., 2021), dragon fruit (Nan et al., 2023), 
and tomatoes (Zeng et al., 2023). However, there has been limited 
research on the detection of the direction and bud eye position of po
tatoes. The POD-YOLO algorithm proposed in this study successfully 
performs bud eye position detection and potatoes orientation, yielding 
satisfactory results. However, there are several areas for improvement in 
future research. (1) When potatoes are at the edge of the image, the 
regression effect of the bounding box is poor, sometimes failing to fit the 
potato boundaries well. This results in incorrect regression angles. A 
possible reason for this is that the bounding boxes lack complete potato 
feature information. Thus, object features are lost during forward 
propagation, causing the model to misjudge and provide incorrect 
regression results. (2) The difficulty in bud eye recognition may stem 
from an insufficient number of bud eye samples, which prevents the 
model from effectively learning relevant features. Future studies could 
consider incorporating self-attention mechanisms to enhance the 
model’s focus on bud eye information. (3) For bounding boxes similar to 

Table 6 
Evaluation results of different rotated object detection models.

Model Backbone mAP (%) Weight (MB) AP (%) Params (M) Detection Speed (FPS) Latency (ms)

bud potato

FasterRCNN R-50 57.90 330.30 16.80 40.20 41.12 11.5 87.2
RoI Trans. R-50 62.00 441.60 24.90 99.00 55.03 9.6 104.3
RetinaNet R-50 49.80 290.50 0 99.50 36.15 13.3 75.1
S2A-Net R-50 49.80 309.60 9.40 90.20 38.54 11.7 85.7
R3Det R-50 49.80 334.00 0.10 99.40 41.60 9.7 103.3
POD-YOLO CSPDP 97.20 3.89 95.00 99.40 1.75 110.9 9.01
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a square the angle regression loss function still cannot completely avoid 
the generation of a certain degree of estimation error during the calcu
lation process. This causes the bounding box to not align precisely with 
the object edges, and the center point of the bounding box deviates from 
the object center.

5. Conclusions

This study proposed a novel lightweight model, POD-YOLO, for 
detecting potato orientation and bud eye locations. The model effec
tively captures the orientation and bud eye positions of potatoes under 
various conditions. CSPDarkNet in the backbone network was replaced 
with CSPDPNet to reduce the number of model parameters. The SPD- 
Conv downsampling module was introduced to replace the convolu
tional modules in both the backbone and neck, enhancing the detection 
capability for small objects like bud eyes and low-resolution images. The 
angle regression loss function, ProbIoU, was replaced with KFIoU to 
improve the regression quality of rotated bounding boxes and the 
overall detection performance of the model. The POD-YOLO model 
achieved a mAP of 97.2%, a detection time of 9.01 ms, and a parameter 
count of 175 million, meeting the requirements for real-time, accurate, 
and lightweight detection in intelligent cutting robots. In future 
research, we will focus on improving the orientation recognition of 
occluded potatoes and enhancing the detection accuracy of bud eyes, 

providing technical support for the practical application of the potato- 
cutting robot and offering solutions for the development of agricul
tural automation.
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